Please use this identifier to cite or link to this item:
http://hdl.handle.net/11422/8813
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Carmo, Eduardo Gomes Dutra do | - |
dc.contributor.author | Alvarez, Gustavo Benitez | - |
dc.contributor.author | Rochinha, Fernando Alves | - |
dc.contributor.author | Loula, Abimael Fernando Dourado | - |
dc.date.accessioned | 2019-07-15T19:18:01Z | - |
dc.date.available | 2023-12-21T03:01:25Z | - |
dc.date.issued | 2008-05-31 | - |
dc.identifier.issn | 0045-7825 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/11422/8813 | - |
dc.description.abstract | A stabilized finite element method is presented for scalar and linear second-order boundary value problems. The method is obtained by adding to the Galerkin formulation multiple projections of the residual of the differential equation at element level. These multiple projections allow the generation of appropriate number of free stabilization parameters in the element matrix depending on the local space of approximation and on the differential operator. The free parameters can be determined imposing some convergence and/or stability criteria or by postulating the element matrix with the desired stability properties. The element matrix of most stabilized methods (such as, GLS and GGLS methods) can be obtained using this new method with appropriate choices of the stabilization parameters. We applied this formulation to diffusion–reaction problems. Optimal rates of convergency are numerically observed for regular solutions. | en |
dc.language | eng | pt_BR |
dc.publisher | Elsevier | en |
dc.relation.ispartof | Computer Methods in Applied Mechanics and Engineering | en |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Stabilization | en |
dc.subject | GLS | en |
dc.subject | GPR | en |
dc.subject | Diffusion–reaction equation | en |
dc.subject | Finite element method | en |
dc.subject | Second-order boundary value problems | en |
dc.title | Galerkin projected residual method applied to diffusion–reaction problems | en |
dc.type | Artigo | pt_BR |
dc.identifier.doi | 10.1016/j.cma.2008.05.021 | pt_BR |
dc.description.resumo | Indisponível. | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Núcleo Interdisciplinar de Dinâmica dos Fluidos | pt_BR |
dc.subject.cnpq | CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS | pt_BR |
dc.citation.volume | 197 | pt_BR |
dc.citation.issue | 51-52 | pt_BR |
dc.citation.spage | 4559 | pt_BR |
dc.citation.epage | 4570 | pt_BR |
dc.embargo.terms | 365 dias | pt_BR |
Appears in Collections: | Engenharias |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2008_CARMO_CMAPE_v197-p4559-4570-min.pdf | 905.54 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.