Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11422/9366
Especie: Artigo
Título : Big data privacy context: literature effects on secure informational assets
Autor(es)/Inventor(es): Rebello, Celina
Tavares, Elaine
Resumen: Indisponível.
Resumen: This article’s objective is the identification of research opportunities in the current big data privacy domain, evaluating literature effects on secure informational assets. Until now, no study has analyzed such relation. Its results can foster science, technologies and businesses. To achieve these objectives, a big data privacy Systematic Literature Review (SLR) is performed on the main scientific peer reviewed journals in Scopus database. Bibliometrics and text mining analysis complement the SLR. This study provides support to big data privacy researchers on: most and least researched themes, research novelty, most cited works and authors, themes evolution through time and many others. In addition, TOPSIS and VIKOR ranks were developed to evaluate literature effects versus informational assets indicators. Secure Internet Servers (SIS) was chosen as decision criteria. Results show that big data privacy literature is strongly focused on computational aspects. However, individuals, societies, organizations and governments face a technological change that has just started to be investigated, with growing concerns on law and regulation aspects. TOPSIS and VIKOR Ranks differed in several positions and the only consistent country between literature and SIS adoption is the United States. Countries in the lowest ranking positions represent future research opportunities.
Materia: Big data
Multi-Criteria Decision Making (MCDM)
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
Vlse Kriterijumska Optimizacija Kompromisno Resenje (VIKOR)
Bibliometrics
Materia CNPq: CNPQ::CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO
Unidade de producción: Instituto COPPEAD de Administração
Es parte de: Transactions on Data Privacy
Volumen: 11
Número: 3
Fecha de publicación: dic-2018
País de edición : Brasil
Idioma de publicación: por
Tipo de acceso : Acesso Aberto
ISSN: 2013-1631
Aparece en las colecciones: Ciências Sociais Aplicadas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Big data privacy context-min.pdf274.1 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.