Use este identificador para citar ou linkar para este item:
http://hdl.handle.net/11422/9366
Tipo: | Artigo |
Título: | Big data privacy context: literature effects on secure informational assets |
Autor(es)/Inventor(es): | Rebello, Celina Tavares, Elaine |
Resumo: | Indisponível. |
Resumo: | This article’s objective is the identification of research opportunities in the current big data privacy domain, evaluating literature effects on secure informational assets. Until now, no study has analyzed such relation. Its results can foster science, technologies and businesses. To achieve these objectives, a big data privacy Systematic Literature Review (SLR) is performed on the main scientific peer reviewed journals in Scopus database. Bibliometrics and text mining analysis complement the SLR. This study provides support to big data privacy researchers on: most and least researched themes, research novelty, most cited works and authors, themes evolution through time and many others. In addition, TOPSIS and VIKOR ranks were developed to evaluate literature effects versus informational assets indicators. Secure Internet Servers (SIS) was chosen as decision criteria. Results show that big data privacy literature is strongly focused on computational aspects. However, individuals, societies, organizations and governments face a technological change that has just started to be investigated, with growing concerns on law and regulation aspects. TOPSIS and VIKOR Ranks differed in several positions and the only consistent country between literature and SIS adoption is the United States. Countries in the lowest ranking positions represent future research opportunities. |
Palavras-chave: | Big data Multi-Criteria Decision Making (MCDM) Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) Vlse Kriterijumska Optimizacija Kompromisno Resenje (VIKOR) Bibliometrics |
Assunto CNPq: | CNPQ::CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO |
Unidade produtora: | Instituto COPPEAD de Administração |
In: | Transactions on Data Privacy |
Volume: | 11 |
Número: | 3 |
Data de publicação: | Dez-2018 |
País de publicação: | Brasil |
Idioma da publicação: | por |
Tipo de acesso: | Acesso Aberto |
ISSN: | 2013-1631 |
Aparece nas coleções: | Ciências Sociais Aplicadas |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Big data privacy context-min.pdf | 274.1 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.