Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/11422/13595
Especie: | Dissertação |
Título : | Planejamento de sinais para identificação de modelos multivariáveis com restrição |
Otros títulos: | Input design for identification of constrained multivariate models |
Autor(es)/Inventor(es): | Mussoi, Cristiano Salah |
Tutor: | Melo Junior, Príamo Albuquerque |
Tutor : | Secchi, Argimiro Resende |
Resumen: | Uma nova metodologia de identificação de modelos empíricos para controladores MPC (do inglês, Model Predictive Control), que considera tanto restrições operacionais quanto fenomenológicas, é proposta nesta dissertação. A partir do trabalho de ORENSTEIN (2013), foi desenvolvido um método de identificação do tipo “caixa cinza” capaz de gerar somente modelos fisicamente consistentes, ou seja, modelos nos quais o valor e o sinal dos ganhos estáticos têm sentido físico. A metodologia desenvolvida, que faz uso de perturbações de entrada do tipo degrau e do tipo GBN (do inglês, Generalized Binary Noise), envolve etapas tanto on-line como off-line, sendo que as etapas off-line são executadas por um pacote computacional composto de quatro algoritmos: os dois primeiros realizam a análise de dados do processo e os dois últimos resolvem problemas de otimização com restrição. A metodologia foi aplicada na identificação de sistemas dinâmicos lineares e em um problema clássico da área, que é um coluna de destilação da Shell, se mostrando rápida e robusta nas simulações realizadas. Foram utilizados os tempos de simulação como indicadores de rapidez e os parâmetros estatísticos MRSE (do inglês, Mean Relative Squared Error ) e MVAF (do inglês, Mean Variance-Accounted-For ) como indicadores de robustez da metodologia proposta. |
Resumen: | A new methodology for the identification of empirical models for Model Predictive Control (MPC), which considers both operational and phenomenological constraints, is proposed in this dissertation. From the work of ORENSTEIN (2013), a "gray box" method of identification type was developed capable to generate only physically consistent models, i.e., models in which the value and the signal of the static gains have physical sense. The developed methodology, which makes use of step-type as well as GBN-type (Generalized Binary Noise) input disturbances, involves both online and offline steps, and the offline steps are performed by a computational package composed of four algorithms: the first two ones perform the data analysis of the process and the last two ones solve optimization problems with restriction. The methodology was applied in the identification of linear dynamic systems and of a classic problem in this field, namely, a Shell distillation column, showing to be fast and robust in the simulations presented. The simulation times were used as indicators of speed and the statistical parameters MRSE (Mean Relative Squared Error) and MVAF (Mean Variance-Accounted-For) as indicators of robustness of the proposed methodology. |
Materia: | Identificação de sistemas Controle de processos MPC linear |
Materia CNPq: | CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
Programa: | Programa de Pós-Graduação em Engenharia Química |
Unidade de producción: | Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia |
Editor: | Universidade Federal do Rio de Janeiro |
Fecha de publicación: | feb-2019 |
País de edición : | Brasil |
Idioma de publicación: | por |
Tipo de acceso : | Acesso Aberto |
Aparece en las colecciones: | Engenharia Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
CristianoSalahMussoi-min.pdf | 1.66 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.