Use este identificador para citar ou linkar para este item: http://hdl.handle.net/11422/13595
Tipo: Dissertação
Título: Planejamento de sinais para identificação de modelos multivariáveis com restrição
Título(s) alternativo(s): Input design for identification of constrained multivariate models
Autor(es)/Inventor(es): Mussoi, Cristiano Salah
Orientador: Melo Junior, Príamo Albuquerque
Coorientador: Secchi, Argimiro Resende
Resumo: Uma nova metodologia de identificação de modelos empíricos para controladores MPC (do inglês, Model Predictive Control), que considera tanto restrições operacionais quanto fenomenológicas, é proposta nesta dissertação. A partir do trabalho de ORENSTEIN (2013), foi desenvolvido um método de identificação do tipo “caixa cinza” capaz de gerar somente modelos fisicamente consistentes, ou seja, modelos nos quais o valor e o sinal dos ganhos estáticos têm sentido físico. A metodologia desenvolvida, que faz uso de perturbações de entrada do tipo degrau e do tipo GBN (do inglês, Generalized Binary Noise), envolve etapas tanto on-line como off-line, sendo que as etapas off-line são executadas por um pacote computacional composto de quatro algoritmos: os dois primeiros realizam a análise de dados do processo e os dois últimos resolvem problemas de otimização com restrição. A metodologia foi aplicada na identificação de sistemas dinâmicos lineares e em um problema clássico da área, que é um coluna de destilação da Shell, se mostrando rápida e robusta nas simulações realizadas. Foram utilizados os tempos de simulação como indicadores de rapidez e os parâmetros estatísticos MRSE (do inglês, Mean Relative Squared Error ) e MVAF (do inglês, Mean Variance-Accounted-For ) como indicadores de robustez da metodologia proposta.
Resumo: A new methodology for the identification of empirical models for Model Predictive Control (MPC), which considers both operational and phenomenological constraints, is proposed in this dissertation. From the work of ORENSTEIN (2013), a "gray box" method of identification type was developed capable to generate only physically consistent models, i.e., models in which the value and the signal of the static gains have physical sense. The developed methodology, which makes use of step-type as well as GBN-type (Generalized Binary Noise) input disturbances, involves both online and offline steps, and the offline steps are performed by a computational package composed of four algorithms: the first two ones perform the data analysis of the process and the last two ones solve optimization problems with restriction. The methodology was applied in the identification of linear dynamic systems and of a classic problem in this field, namely, a Shell distillation column, showing to be fast and robust in the simulations presented. The simulation times were used as indicators of speed and the statistical parameters MRSE (Mean Relative Squared Error) and MVAF (Mean Variance-Accounted-For) as indicators of robustness of the proposed methodology.
Palavras-chave: Identificação de sistemas
Controle de processos
MPC linear
Assunto CNPq: CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
Programa: Programa de Pós-Graduação em Engenharia Química
Unidade produtora: Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Editora: Universidade Federal do Rio de Janeiro
Data de publicação: Fev-2019
País de publicação: Brasil
Idioma da publicação: por
Tipo de acesso: Acesso Aberto
Aparece nas coleções:Engenharia Química

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
CristianoSalahMussoi-min.pdf1.66 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.