Please use this identifier to cite or link to this item:
http://hdl.handle.net/11422/8525
| Type: | Artigo |
| Title: | Velocity-gradient probability distribution functions in a lagrangian model of turbulence |
| Author(s)/Inventor(s): | Moriconi, Luca Pereira, Rodrigo Miranda Grigorio, Leonardo de Sousa |
| Abstract: | Indisponível. |
| Abstract: | The Recent Fluid Deformation Closure (RFDC) model of lagrangian turbulence is recast in path-integral language within the framework of the Martin–Siggia–Rose functional formalism. In order to derive analytical expressions for the velocity-gradient probability distribution functions (vgPDFs), we carry out noise renormalization in the low-frequency regime and find approximate extrema for the Martin–Siggia–Rose effective action. We verify, with the help of Monte Carlo simulations, that the vgPDFs so obtained yield a close description of the single-point statistical features implied by the original RFDC stochastic differential equations. |
| Keywords: | Intermittency Lagrangian dynamics Turbulence Stochastic processes |
| Subject CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS |
| Production unit: | Núcleo Interdisciplinar de Dinâmica dos Fluidos |
| Publisher: | IOP Publishing |
| In: | Journal of Statistical Mechanics: Theory and Experiment |
| Issue Date: | 9-Oct-2014 |
| DOI: | 10.1088/1742-5468/2014/10/P10015 |
| Publisher country: | Brasil |
| Language: | eng |
| Right access: | Acesso Aberto |
| ISSN: | 1742-5468 |
| Appears in Collections: | Engenharias |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| MoriconiEtAl-Velocity-GradientProbabilityDistributionFunctionsInALagrangianModelOfTurbulence-min.pdf | 409.14 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.